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Abstract
The effect of enhancing nonlinear generation of entangled photons in the process
of interaction of the external coherent electromagnetic field with a nonlinear
dispersive medium is studied in this paper. Taking into account the second- and
third-order susceptibility tensors of the crystal, it is demonstrated that in the
good cavity approximation the bistable behaviour of the two-photon generation
coefficient as a function of intensity of the pump laser field is possible. This
effect is stimulated by decreasing the detuning between the frequency of the
cavity mode and pump frequency as a function of anharmonicity terms in
polarization.

PACS numbers: 4250, 4120

1. Introduction

The problem of quantum fluctuations and the generation of the non-classical electromagnetic
field (EMF) in two-photon and multi-photon processes has recently been the subject of a number
of theoretical and experimental studies [1]. The entanglement phenomenon between idler and
signal photons generated in the parametric down-conversion has been intensively studied in
the last decade. For example, such effects as quantum interference [2] and non-locality [3] are
possible thanks to the extremely short correlation time between two photons produced in the
large band of parametrical down-conversion [4]. In one-dimension approximation the broad-
band squeezed-vacuum EMF consists of pairs of entanglement photons which can coherently
excite the dipole-forbidden transitions like coherent EMF [5]. The effects of coherent excitation
arise in the problem of generating more powerful broad-band squeezed light in the parametrical
down-conversion [6].

The aim of this paper is to study the process of generation of entanglement photon pairs in
a nonlinear cavity which contains the second- and third-order nonlinearity driven by a strong
external coherent laser field. Let us consider the situation when the parametric oscillator
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consists of a crystal in a double-resonant cavity with mirrors which almost completely reflect the
subharmonic light and reflect the pump light badly. If the mirrors only reflect the subharmonic
light one can adiabatically eliminate the operators of the pump light. Further, a large number
of discrete modes for the subharmonic light inside the cavity which contains a nonlinear
disperse medium is considered. If the double-cavity frequency of entanglement photons
ω2k0 = ωk + ω2k0−k is off-resonance with the pump field ωp, the detuning �0 = ωp − ω2k0

extinguishes the process of generation of entanglement photons in the cavity. In this situation,
the third-order nonlinearity can diminish the detuning factor in the nonlinear dispersive medium
as a function of intensity of the pump field. In this critical point a more powerful enhancement
of the generation rate of entanglement photons is observed.

This effect differs from the traditional parametrical oscillator [7] due to the fact that the
number of conjugate mode pairs ki , 2k0 − ki (i = 1, 2, . . . , N) in which entanglement photon
pairs are generated is larger and the cavity is bad for the pump field, so that we can eliminate
the fluctuation part of the pump field. In studying the generation of entanglement photon pairs
the third term in polarization decomposition is also taken into account, as is the influence of
the detuning between the pump frequency and the double-frequency subharmonic field (�0)
on the generation rate.

Our attention is mainly focused on the dependence of the number of entanglement photon
pairs as a function of the low and high pump field intensity.

A new master equation for the coupled subharmonic EMF with an external-driven coherent
field is obtained. The coupled system obeys theSU(1, 1) symmetry and a Casimir pseudovector
operator for SU(1, 1) algebra is conserved. Using the generalized P -representation of the
Fokker–Planck equation for SU(1, 1) symmetry the proposed master equation is obtained. In
order to obtain the steady state solution of the master equation two methods are proposed.
The first method is based on the stationary solution of the Fokker–Planck equation and the
second represents the density matrix through antinormal products of creation and annihilation
operators of SU(1, 1) algebra. The analytical and numerical results show that these two
methods are not equivalent, and that the theory of stationary solutions for quantum master
equations needs more careful development. A similar problem was analysed and solved for
the case of a two-level system interacting with a coherent external field [8]. It is well known
that such a two-level system obeys SU(2) symmetry. However, in recent years it has also
been realized that the SU(1, 1) group plays an important role in many problems in quantum
optics [9–11].

2. Master equation for the subharmonic field

The Hamiltonian which describes the interaction of the EMF with the nonlinear dispersive
medium in the cavity can be obtained, following the Collett and Gardiner treatment [12], as

H = He + Hi + Hc. (1)

Here

He = h̄

∫ ∞

0
dωωB†

ωBω (2)

is the free Hamiltonian for the external field modes. Bω andB†
ω are the annihilation and creation

operators for the external field which satisfy the commutation relation [Bω,B
†
ω′ ] = δ(ω−ω′):

Hi = ih̄
∫ +∞

−∞
dω k(ω)[Bωb

† − B†
ωb] (3)
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is the interaction Hamiltonian between the external coherent field with frequency ωp and the
cavity field which contains a limited number of discrete field modes in the energy interval
(0, h̄ω2k0). b and b† are the annihilation and creation operators for the intracavity field with
frequency near the pump (�0 ≈ 0); k(ω) is coupling constant. We consider that the cavity
is good for the subharmonic field (k(ωk0) ≈ 0) and for the high-frequency field ω ≈ ωp the
coupling constant is large.

In order to obtain the intracavity Hamiltonian Hc, let us expand the polarization of the
nonlinear medium to third order in the EMF strength,

Pα = χ
(1)
αβ Eβ + χ

(2)
αβγ EβEγ + χ

(3)
αβγ δEβEγEδ. (4)

Here χ(n) is a (n + 1)th-rank susceptibility tensor. After introducing this polarization in the
density part of the interaction HamiltonianHint = ∫

(Pα( �E), dEα) one can obtain the following
form of intracavity Hamiltonian [6]:

Hc =
∫

d3�r
(

| �B|2
2µ0

+
1

2

(
ε0 + χ

(1)
αβ

)
EαEβ +

1

3
χ
(2)
αβγ EαEβEγ +

1

4
χ
(3)
αβγ δEαEβEγEδ

)
. (5)

As the external laser field pump is only the cavity mode 2k0 one can express the EMF strength
�E inside the cavity through the strength intracavity pump field �Ep and the subharmonic mode
components generated in the process of parametrical down-conversion �Esh:

�E = �Ep + �Esh. (6)

�Ep can be expressed by the annihilation (b) and creation (b†) operators in the form

�Ep(�r, t) = i

√
ω̄p

2ε0

(
b�u(�r) exp(−iωpt) − b† �u∗ exp(iωpt)

)
(7)

where

�u(�r) = �eλ√
V

exp[i(�kp, �r)].

Here V is the quantization volume and �eλ is the polarization vector of the EMF. The electric-
field operator for the cavity mode of subharmonic frequencies ωk � ω2k0 can be written as

�Esh(�r, t) = i

√
ω̄p

2ε0

2k0∑
k=0

(
ak �vk(�r) exp(−iωkt) − a

†
k �v∗

k (�r) exp(iωkt)
)

(8)

where

�vk(�r) = �eλ√
V

exp[i(�k, �r)]

and ak and a
†
k are the annihilation and creation photon operators in the cavity mode k. Taking

into account that the losses of pump EMF in the cavity are larger than those of the subharmonic
EMF one can represent the intracavity Hamiltonian as

Hc = h̄ω̃pb
†b + h̄χ0b†2

b2 + h̄

2k0∑
k=0

(
ω̃k + χ0

k b
†b
)
a

†
kak

+h̄
2k0∑
k1=0

2k0∑
k2=0

(
χ ′
k1,k2

a
†
k1
a

†
2k0−k1

ak2a2k0−k2 + χ ′′
k1,k2

a
†
k1
ak1a

†
k2
ak2

)

+i
2k0∑
k=0

gk
(
b†aka2k0−k − ba

†
ka

†
2k0−k

)
. (9)
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Here the coefficients

ω̃a = 1

2

(
1 +

χ(1)

ε0

)
ωa

where a = (p, k),

χ0 = 3

8

χ(3)(ωp, ωp)h̄ωp

ε2
0

ωp χ0
k = 3

2

χ(3)(ωp, ωk)h̄ωp

ε2
0

ωk

χ ′
k1,k2

= 3

8

χ(3)(ωk1 , ωk2)h̄

ε2
0

√
ωk1ω2k0−k1ωk2ω2k0−k2 χ ′′

k1,k2
= 3

8

χ(3)(ωk1 , ωk2)h̄

ε2
0

ωk1ωk2

and

gk =
√

h̄

2ε0

χ(2)

ε0
h̄
√
ωpωkω2k0−k

is the constant of the interaction of the intracavity pump and subharmonic fields with the
frequenciesωp andωk respectively, obtained from the second-order polarization expansion (1).

Let us consider the operator O(t) which belongs to the subharmonic EMF. Taking into
account the Hamiltonian (1) one can write the following Heisenberg equation for this mean
value of the operator:

d〈O(t)〉
dt

= i
2k0∑
k=0

h̄
(
ω̃k + χ0

k b
†b
)〈[

a
†
kak,O(t)

]〉

+ih̄
2k0∑
k1=0

2k0∑
k1=0

〈[
χ ′
k1,k2

a
†
k1
a

†
2k0−k1

ak2a2k0−k2 + χ ′
k1,k2

a
†
k1
ak1a

†
k2
ak2 ,O(t)

]〉

−1

h̄

2k0∑
k=0

gk
〈[
b†aka2k0−k − ba

†
ka

†
2k0−k,O(t)

]〉
. (10)

In this equation we must eliminate the cavity operators of higher frequency b(t) and b†(t).
Using the system Hamiltonian one can obtain the following Heisenberg equation for these
operators:

db

dt
= −i

(
ω̃p + 2χ0b†b +

2k0∑
k=0

χ0
k a

†
kak

)
b +

1

2

2k0∑
k=0

gkaka2k0−k +
∫ +∞

−∞
dω k(ω)Bω. (11)

As the external EMF is in the single-mode coherent field |in〉 = ∏
ωi �=ωp

|0〉ωi
exp(βB†

ωp
−

β∗Bωp)|0〉ωp , the solution of the Heisenberg equation for the external EMF can be represented
as

Bω(t) = Bω(0)e
−iωt − k(ω)

∫ t

0
dτ e−iωτ b(t − τ) (12)

where Bω(0) is the free part of the EMF operator, which satisfies the identity Bω(0)|in〉 =
βδω,ωp |in〉. After substitution of this solution in Heisenberg equation (11) one can represent
the solution of operator b2k0 in the following form:

b(t) = b(0)e−iω2k0 t +
∫ t

0
dτ1 T exp

(
− i

∫ t

τ1

(ω̂(τ ) − i&) dτ

)

×
(∫ +∞

−∞
k(ω)Bω(0)e

−iωτ1 dω +
1

h̄

2k0∑
k=0

gkak(τ1)a2k0−k(τ1)

)
. (13)
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Here T represents the chronological product of the operators and & = πk2(ω2k0) is the cavity
loss at frequency ω2k0 . The coupling between cavity mode 2k0 and the external EMF takes
place at t = 0:

ω̂(t) = ω̄p + 2χ0b†b +
2k0∑
k=0

χ0
k a

†
kak (14)

where ω̄p = ω̃p − ∫
dω k2(ω)P (ω2k0 − ω)−1.

In order to eliminate the free-field operators of the external EMF and the cavity field
operators at the frequency ω2k0 one can make the following approximation. Inside the T -
product we replace the operator ω̂ by a steady state value ω̄ in which all the number state
operators are replaced by their mean values 〈b†b〉, 〈a†

kak〉. Neglecting the subharmonic
number term

∑2k0
k=0 χ

0
k a

†
kak in comparison with the quasicoherent term 2χ0b†b we obtain

for the operator b†b the following equation:

b†b = 1

π

&|β|2
(ωp − ω̄)2 + &2

. (15)

Here for frequency ω̄ we used its second-order approximation

ω̄ = ω̄p − 2�f

where �f = − χ0&|β|2
[π(ωp−ω̄p)2+&2] . After introducing equation (13) into (10) and using the Born–

Markov approximation we obtain the following expression:

d〈O(t)〉
dt

= i
2k0∑
k=0

〈[
ω̄ka

†
kak,O(t)

]〉

+i
2k0∑
k1=0

2k0∑
k2=0

〈[
χ̄ ′
k1,k2

a
†
k1
a

†
2k0−k1

ak2a2k0−k2 + χ ′′
k1,k2

a
†
k1
ak1a

†
k2
ak2 ,O(t)

]〉

+
2k0∑
k=0

(ke−iωpt
〈[
a

†
ka

†
2k0−k,O(t)

]− (∗
keiωpt

[
aka2k0−k,O(t)

]〉

+
2k0∑
k1=0

2k0∑
k2=0

γk1,k2

〈[
a

†
k1
a

†
2k0−k1

O(t), ak2a2k0−k2

]
+
[
a

†
k2
a

†
2k0−k2

,O(t)ak1a2k0−k1

]〉
(16)

where ω̄k = ωk + �f , χ̄ ′
k1,k2

= χ ′
k1,k2

− gk1gk2 (ω̄−2ωp)

h̄2(&2+(ω̄−2ωp)2)
is the constant of interaction between

the entanglement photon pairs stimulated by the second- and third-order susceptibility,

(2
k = g2

k

h̄2χ0
�f , (k is the analogue of Rabi frequency for the excitations of photon pairs in

the cavity, and γk1,k2 = gk1gk2&

h̄2(&2+(ω̄−2ωp)2)
are the losses of coherent photon pairs in the cavity

stimulated by the losses of the pump field inside the cavity.
As 〈O(t)〉 = Tr{ρ̃(t)O} = Tr{ρ̃O(t)} in equation (16) one can pass from the Heisenberg

to Schrödinger picture. After the cyclic permutation under the Tr{· · ·} operation one can
replace the commutators from operator O to the density matrix of subharmonic fields
ρ(t) = eiH0t/h̄ρ̃(t)e−iH0t/h̄ (here H0 = ∑

k h̄ω̄ka
†
kak):

dρ(t)

dt
= −i

2k0∑
k1=0

2k0∑
k2=0

[χ̄ ′
k1,k2

a
†
k1
a

†
2k0−k1

ak2a2k0−k2 + χ ′′
k1,k2

a
†
k1
ak1a

†
k2
ak2), ρ(t)]
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−
2k0∑
k=0

[(e−i(�0−�f )t a
†
ka

†
2k0−k − (∗ei(�0−�f )taka2k0−k, ρ(t)]

+
2k0∑
k1=0

2k0∑
k2=0

γk1,k2{[ak1a2k0−k1 , ρ(t)a
†
k2
a

†
2k0−k2

]

+[ak2a2k0−k2ρ(t), a
†
k1
a

†
2k0−k1

]}. (17)

We observe that in the absorption and generation of the pump photon in the cavity, pairs of
photons with the sum energy h̄ωk1 + h̄ωk2 = h̄ω2k0 are generated. If we decompose the density
matrix of the coherent states of Boson subharmonic operators we obtain a complicated Fokker–
Planck equation due to the existence of a large number of subharmonic modes in the resonance
with pump fields. In the case that we have only one cavity mode in this resonance k = k0,
the master equation (17) is reduced to the same equation as studied in [13]. It is not difficult
to observe that when the number of modes increases, the Drummond decomposition becomes
difficult and for the investigation of the behaviour of photon pair generation another coherent
state decomposition for the density matrix is necessary. We observe that the coefficients in the
master equation (17) are smoothly dependent on the frequency of the subharmonic fields ωk .
In this situation it is convenient to replace the frequency ωk with ωk0 in all the coefficients.

In this approximation one can introduce the collective cavity field operators [5, 14]

I + =
2k0∑
k=0

a
†
ka

†
2k0−k

2
I− =

2k0∑
k=0

aka2k0−k

2
Iz =

2k0∑
k=0

1
2

(
a

†
kak + 1

2

)
(18)

which satisfy the following commutators for the operators of SU(1, 1) algebra:

[I +, I−] = −2Iz [Iz, I
±] = ±I±. (19)

Thus, the density matrix equation W(t) = exp{i(ωp − ω̄2k0)Iz}ρ(t) exp{−i(ωp − ω̄2k0)Iz} can
be represented in the following form:
∂W(t)

∂t
= −i[χI +I− + �Iz + i{(∗I− − (I +},W(t)] + γ {[I−W(t), I +] + [I−,W(t)I +]}

(20)

where

χ = 4(χ̄ ′
k0,k0

− χ ′′
k0,k0

) � = �0 − �f + χ ′′
k0,k0

( = 2(k0 γ = 4γk0,k0 .

It is not difficult to observe that the Casimir operator

I 2 = (Iz)
2 − 1/2(I +I− + I−I +) (21)

which satisfies the commutator relations [I 2, I±] = [I 2, Iz] = 0 is conserved. The
discrete representation of SU(1, 1) Lie algebra is described by the state vectors |m, j〉 that
satisfy [10, 15]

I 2|m, j〉 = j (j − 1)|m, j〉
Iz|m, j〉 = (m + j)|m, j〉
I +|m, j〉 =

√
(m + 1)(m + 2j)|m + 1, j〉

I−|m, j〉 =
√
m(m + 2j − 1)|m − 1, j〉

(22)

where I−|0, j〉 = 0. Here j is the Bargmann index and m is any non-negative integer. The
set |m, j〉, (m = 0, 1, 2, . . . ; j = const) becomes the complete orthonormal basis

〈j,m|n, j〉 = δm,n

∞∑
m=0

|m, j〉〈j,m| = 1.
(23)
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In analogy with the Dicke co-operating number j = N/2 for SU(2) algebra one can
introduce the co-operative number j for distinguishing the conjugate mode pairs 2k0 − ki, ki ,
i = 1, 2, . . . , N . Using the conservation vector I 2 = j (j − 1) one can derive that the
co-operative number for the pairs of photons is j = ∑2k0

k=0 1/4 = N/2.
In the next section the stationary solution for master equation (20) will be analysed. This

solution allows us to obtain mean values for the number of pairs of entanglement photons
〈I +I−〉, number of photons 〈Iz〉 and their fluctuations δ2 = 〈I 2

z 〉 − 〈Iz〉2.

3. Fokker–Planck equation and its steady state solution

Following the decomposition of the density matrix on non-diagonal generalized P

representation for Bose algebra [13] one can introduce the following decomposition on coherent
states for SU(1, 1) algebra:

W =
∫
D

P (α, β)
|α〉〈β∗|
〈β∗|α〉 dµ (α, β). (24)

Here D is the integration domain, dµ (α, β) = dα dβ is the integration measure,

|α〉 = (1 − |α|2)j exp(αI †)|0, j〉
〈β∗| = (1 − |β|2)j 〈j, 0| exp(βI−)

are the coherent states for the SU(1, 1) algebra and

〈β∗|α〉 = (1 − |α|2)j (1 − |β|2)j
(1 − αβ)2j

is the normalization coefficient for the projector operator |α〉〈β∗|. Using the following action
of operators I +, I−, Iz of SU(1, 1) algebra on the coherent state:

I +|α〉 = (
1 − |α|2)j ∂

∂α
exp

(
αI +

)|0, j〉
I−|α〉 = (1 − |α|2)j

(
α2 ∂

∂α
+ 2jα

)
exp (αI +)|0, j〉

Iz|α〉 = (1 − |α|2)j
(
α

∂

∂α
+ j

)
exp (αI +)|0, j〉

one can obtain the following Fokker–Planck equation:

∂

∂t
P (α, β) = ∂

∂α

(
2ijχα

1 + αβ

1 − αβ
+ i�α − ((α2 − 1) + 2jγ α

)
P(α, β)

+
∂

∂β

(
−2ijχβ

1 + αβ

1 − αβ
− i�β − ((β2 − 1) + 2jγβ

)
P(α, β)

− ∂2

∂α2
(γ + iχ)α2P(α, β) − ∂2

∂β2
(γ − iχ)β2P(α, β)

+2γ
∂2

∂α∂β
α2β2P(α, β). (25)

For many problems in quantum optics it is sufficient to know the steady state solution of the
Fokker–Planck equation. Representing the steady state solution in the potential form

P(α, β) = N exp(−3(α, β)) (26)
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one can obtain the following differential equations for the potential 3(α, β):

(γ + iχ)α2 ∂3

∂α
− γα2β2 ∂3

∂β

= 2ijχα
1 + αβ

1 − αβ
− i�α + ((α2 − 1) − 2jγ α + 2(γ + iχ)α − 2γα2β

−γα2β2 ∂3

∂α
+ (γ − iχ)β2 ∂3

∂β

= 2ijχβ
1 + αβ

1 − αβ
− i�β + ((β2 − 1) − 2jγβ + 2(γ − iχ)β − 2γαβ2.

(27)

We observe that for the arbitrary parameters � and χ the so-called potential condition for
3(α, β) [6]

∂23(α, β)

∂β∂α
= ∂23(α, β)

∂α∂β
(28)

is not satisfied.
For solving equation (20) we can examine the case when χ = � = 0. It is not difficult to

observe that in this case the potential condition (28) is satisfied and the steady state solution
can be written as

P(α, β) = 1

N(y)

1

α2β2

(
1

αβ
− 1

)−2j

exp

[
−(

γ

(
1

α
+

1

β

)]
. (29)

The normalization constant is given by the relation

N(y) = − 4π2

&(2j)
y2j−1I2j−1(2y) (30)

where y2 = (2

γ 2 and Iν(z) represents the traditional Bessel function.
Now we consider the situation when χ �= 0 and the detuning � = 0. In this case

the potential condition (28) remains unsatisfied, but it can be satisfied if one introduces the
two terms −iχ∂2/(∂α∂β)[α2β2P(α, β)] and +iχ∂2/(∂β∂α)[α2β2P(α, β)] in equation (25).
As in deriving the Fokker–Planck equation we have considered that ∂2/(∂β∂α)P (α, β) =
∂2/(∂α∂β)P (α, β), then these two terms in the right-hand side of Fokker–Planck equation (25)
give zero contribution. After this, equation (25) suffers some modification. The steady state
solution of the Fokker–Planck equation can be obtained from the equations

0 =
(

− 2ijχα
1 + αβ

1 − αβ
− ((α2 − 1) + 2jγ α − ∂

∂α
(γ + iχ)α2

+(γ − iχ)
∂

∂β
α2β2

)
P(α, β)

0 =
(

2ijχβ
1 + αβ

1 − αβ
− ((β2 − 1) + 2jγβ − ∂

∂β
(γ − iχ)β2

+(γ + iχ)
∂

∂α
α2β2

)
P(α, β).

(31)

Using the representation of P function through potential 3(α, β) from equations (31) one can
obtain the following differential equations which satisfy the potential condition (28):

∂3

∂α
= 2j

α(αβ − 1)
− (

α2(γ + iχ)
+

2

α

∂3

∂β
= 2j

β(αβ − 1)
− (

β2(γ − iχ)
+

2

β
.

(32)
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After introducing the potential 3(α, β) determined from equations (32) in relation (26) we
obtain the following relation from P function:

P(α, β) = 1

N(y1)

1

α2β2

(
1

αβ
− 1

)−2j

exp

[
−(

(
1

α(γ − iχ)
+

1

β(γ + iχ)

)]
. (33)

Here the normalization constant depends on the y2
1 = (2

γ 2+χ2 .
In this situation, from definition (24) one can obtain the following expression for the mean

value of the physical quantity O:

〈O〉 =
∞∑
n=0

∫
D

P (α, β)
〈n|α〉〈β∗|O|n〉

〈β∗|α〉 dµ (α, β). (34)

Using the solution of Fokker–Planck equation (33) we represent below the analytical
dependence of mean values of the following operators O = (Iz, I

2
z , I

+I−):

〈Iz〉 = j + y1
I2j (2y1)

I2j−1(2y1)

〈I 2
z 〉 = j 2 + (2j + 1)y1

I2j (2y1)

I2j−1(2y1)
+ y2

1
I2j+1(2y1)

I2j−1(2y1)

〈I +I−〉 = 2jy1
I2j (2y1)

I2j−1(2y1)
+ y2

1
I2j+1(2y1)

I2j−1(2y1)

(35)

and

δ2 = y1
I2j (2y1)

I2j−1(2y1)
+ y2

1

(
I2j+1(2y1)

I2j−1(2y1)
− I 2

2j (2y1)

I 2
2j−1(2y1)

)
. (36)

Let now study the behaviour of the generation of entanglement photon pairs 〈Iz〉 − j

for small values for argument y1 � 1. In this case the Bessel function is approximated by
In(2x) ≈ xn

&(n+1) and

〈Iz〉 ≈ j +
y2

1

2j − 1
.

The relative fluctuations of the number of photon pairs σ as a function at the intensity of the
external EMF is

σ =
√〈I 2

z 〉 − 〈Iz〉2

〈Iz〉 − j
≈

√
2j − 1

y1
.

For large argument limit of the Bessel function the behaviour of the mean value 〈Iz〉 and
relative fluctuations of number of photon pairs σ are

〈Iz〉 ≈ j + y1

and

σ ≈ 1√
y1

.

By increasing the external pump field the relative fluctuation δ passes from 1/y1 to 1/
√
y1

dependence on y1. The enhancement of the number of photon pairs as a function of the external
field is observed from this expressions too (the numerical results are plotted in figure 1)

In this section we observe that the steady state solution is difficult to obtain in the case of
� �= 0. In the next section we propose a method of representing the density matrix through
the antinormal product of operators I +and I−. This method makes it possible to solve the
stationary master equation for � �= 0.
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(a)

(b)

Figure 1. The dependences of the relative fluctuations of number of photon pairs σ (a) and the
number of biphotons 〈I z〉 (b) as function of frequency ( for j = 20, γ = 0.01, χ = 0.1 and
� = 0.

4. The antinormal representation of the steady state solution of the master equation

In order to obtain the solution of master equation (20) for arbitrary detuning and arbitrary third-
order nonlinearity we represent the density matrix of the steady state master equation (20)

i[χI +I− + �Iz + i{(∗I− − (I +},Ws] − γ {[I−Ws, I
+] + [I−,WsI

+]} = 0 (37)

through antinormal ordering operators I + and I−. The same representation was used in the
papers [8] for SU(2) algebra. Here we extend this method for SU(1, 1) symmetry. Following
the elegant method developed in [8] we are looking for a solution of equation (35) of the form

Ws = A−1F(I−)F +(I +) (38)

where A = Tr[F(I−)F +(I +)], F(I−) and F +(I +) are operator functions of I− and I +,
respectively. Here the function F(I±) can be represented in a Taylor series

F(I±) =
∞∑
n=0

Cn

(
I±)n. (39)
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By using the commutation rules corresponding to SU(1, 1) symmetry, it is easy to demonstrate
the following operator identities:

IzF (I−) = −F(I−)Iz −
[
I +,

∫
F(I−) dI−

]
(40)

[I +I−, F (I−)F (I +)] = [I +, I−F(I−)]F(I +) − H.c. (41)

where H.c. stands for the Hermitian conjugate and∫
F(I−) dI− =

∞∑
n=0

Cn

n + 1

(
I−)n+1

.

The operator equation (37) can be represented in the form[
I +,G(I−)

]
F +(I +) + H.c. = 0 (42)

where

G(I−) = I−F(I−)
(

−i
χ

γ
− 1

)
− i

�

γ

∫
F(I−) dI− − (

γ
F(I−). (43)

From equation (42) it follows that the commutator [I +,G(I−)] must be proportional to F(I−),
but in view of the commutation relations (19) this is not possible. Thus, in order to satisfy
equation (42) it is necessary that the commutator [I +,G(I−)] be zero. This is possible when
G(I−) = const, that is

I−F(I−)
(

1 + i
χ

γ

)
− i

�

γ

∫
F(I−) dI− +

(

γ
F(I−) = const. (44)

The solution of equation (44) can be written in a compact form:

F(I−) = c
(
I− − id

)−(1+ξ)
(45)

where d = i(
γ+iχ and ξ = − i�

γ+iχ . Finally, the stationary density matrix can be represented in
the form

Ws = |c|2(I− − id)−(1+ξ)
(
I + + id∗)−(1+ξ∗)

= lim
n0→∞D−1

n0∑
k,l

ik−ld−k(d∗)l
&(1 + ξ + k)&(1 + ξ ∗ + l)

k!l!&(1 + ξ)&(1 + ξ ∗)
(I−)k(I +)l (46)

where D is the normalization factor so that Tr{Ws} = 1, and &(z) is the &-function. The
normalization constant D is given by the limit D = limn0→∞ D(n0), where

D(n0) =
n0∑
l=0

|d|−2l &(1 + ξ + l)&(1 + ξ ∗ + l)

&(1 + ξ)&(1 + ξ ∗)

n0∑
p=j

&(l + p + j)&(l + p − j + 1)

&(p + j)&(p − j + 1)
. (47)

In analogy with the Fokker–Planck method one can obtain the following values for the mean
number of operators Iz, (Iz)2 and I +I−:

〈O〉 = lim
n0→∞

1

D

n0∑
l=0

|d|−2l &(1 + ξ + l)&(1 + ξ ∗ + l)

&(1 + ξ)&(1 + ξ ∗)

n0∑
p=j

fp(O)
&(l + p + j)&(l + p − j + 1)

&(p + j)&(p − j + 1)
.

(48)

Here

fp(O) =



p if O ≡ Iz

p2 if O ≡ I 2
z

p(p + 1) − j (j + 1) if O ≡ I +I−.

We observed that this method gives results which slightly differ from expression (35). The
difference consists in the representation of the mean value through two sums in expression (48).
In the next section this difference is analysed.
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5. Results and discussions

Let us consider the first case, when the detuning � = 0. This situation corresponds to strong
resonance between the external pump coherent field and cavity mode 2k0. In order to neglect
the field detuning �f as compared to parameter χ in master equation (20) one supposes that
the third-order susceptibility at frequency ωp is less than the same susceptibility at frequency
ωk0 [χ(3)(ωp, ωk0) � χ(3)(ωk0 , ωk0)] and that the value of the intensity of the external pump
field does not affect the inequality �f � χ . In this case one can use the solution obtained by
the Fokker–Planck method.

From the Fokker–Planck and antinormal ordering methods it follows that the expressions
for the mean values of the physical quantities slightly differ. We observe that Fokker–Planck
methods do not allow us to find the steady state solution for the arbitrary detuning� andχ . The
antinormal ordering method allows us to do this, but it expresses the mean value for operator O
through the ratio of two double-divergent sums and it is difficult to do a numerical simulation
of expression (48). It is interesting to find the approximate mathematical connections between
expressions (48) and (35). For this we do some mathematical transformation of expression (48)
in the case � = 0. We change the sum of the variables in expression (48) n = p − j and
m = l + n in order to obtain the following expression for 〈O〉:

〈O〉 =
∑∞

n=0 |d|2n f n(O) (n!&(2j + n))−1∑∞
m=n |d|−2m &(m + 2j)&(m + 1)∑∞

n=0 |d|2n (n!&(2j + n))−1∑∞
m=n |d|−2m &(m + 2j)&(m + 1)

. (49)

This expression is more similar to expression (35), but under the sum onnwe have the divergent
sum

∑∞
m=n |d|−2m &(m + 2j)&(m + 1). If we change the summations in (49) to the integer

parameter n0 in the limit, when n0 → ∞, one can multiply the numerator and denominator of
this expression by |d|2n0 . Making the change of variable p = n0 −m we obtain the following
formula:

〈O〉 = lim
n0→∞

∑n0
n=0 |d|2n f n(R) (n!&(2j + n))−1 S(n, n0)∑n0

n=0 |d|2n (n!&(2j + n))−1 S(n, n0)
(50)

where S(n, n0) = ∑n0−n
p=0 |d|2p &(n0 − p + 2j)&(n0 − p + 1). We observe that for n � n0

the sum S(n, n0) slowly depends on parameter n and in expression (50) one can simplify the
numerator and the denominator by S(n0). Under this supposition equations (35) and (49)
coincide.

Let us now discuss the behaviour of the cavity subharmonic EMF, when the detuning �

is different from zero. In order to obtain the convergent sums in (48) we divide the numerator
and denominator D(n0) in (48) of expression (n0)

2. In this case one obtains the convergent
expressions of the numerator and denominator.

The main interesting effect in this case is described by the dependence of � on the input
pumping coherent EMF:

� = �0 + �f

where �0 ≈ ωp − ω2k0 is the part of detuning which does not depend on the intensity of
the external EMF and �f = &χ0(2/[γ (&2 + (ω̄ − 2ωp)

2)]−1 is the detuning part, which is
proportional to the intensity of the external coherent field. If the sign of detuning�0 is opposite
to the field-dependent detuning �f in the process of increasing the external pump EMF these
two detunings give zero value for the summed detuning �. At this point the enhancement of
the generation rate of biphotons takes place.

Returning to the definition of ξ = − i�
γ+iχ , in the case �f = 0 one observes that the product
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Figure 2. The dependence of the number of biphotons 〈I z〉 as function of frequency( forn0 = 100,
j = 20, �0 = 0.01, γ = 0.01, χ = 0.1 and (a) �f = 0.01(2, (b) �f = 0, (c) �f = 0.1(2.

of the expression

&(1 + ξ + l)&(1 + ξ ∗ + l)

&(1 + ξ)&(1 + ξ ∗)
=

l∏
k=0

[(Re ξ + k)2 + (Im ξ)2] (51)

for γ � χ , which corresponds to Im ξ � Re ξ , will be transformed into
∏l

k=0(Re ξ + k)2. On
the other hand, the sums on l in (47) and (48) become truncated for l∗ = �/χ . The infinity
series becomes finite. It is clear that with increasing field strength the number of generated
biphotons tends to the constant value due to the fact that the expression for the mean number
is obtained from the ratio of two power polynomials of the EMF strength. In figure 2 we
represent some numerical simulations of dependence I z as a function of Rabi frequency for
different values of the field detuning. We observe that with the increase of the field detuning
for large strength of the EMF the mean number of generated photons in the cavity tends to
zero.

The steady state solutions of the master equation obtained by the two proposed methods
differ even in the absence of the external EMF:

iχ [I +I−,W(t)] − γ {[I−W(t), I +] + [I−,W(t)I +]} = 0. (52)

It is not difficult to observe that from the Fokker–Planck method one obtains the ground state
solution Ws = |0, j〉〈j, 0| while the antinormal method gives the solution Ws = D

(
I +I−)−1

(Ws = D
∑∞

m=0[(m + 1)(m + 2j)]−1|m + 1, j〉〈j,m + 1|). The second solution represents
the nonradiant excited quantum state of the system. The linear combination of these two
solutions is also the solution of equation (52). In order to obtain the ground state solution
by the antinormal method in the absence of the external field it is required that the steady
state solution of equation (52) be the ground state solution |0, j〉〈j, 0|. From this requirement
the normalization constant D must be represented through the sum of the inverse value of
the strength of the external pump field 1/d, so that the ratio of two divergent series in (46)
(when the intensity of the external field tends to zero) gives the ground state. This condition
is necessary to obtain further physical solutions for master equations.
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